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We work and type in public, 
e.g., lounges, cafés, airports.
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Keystroke Inference Attack

Attacker
Your sensitive text: 
Hey boss, here is a 
summary of  the 
project meeting …
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Keystroke Inference Attack

Attacker

Is this practical?
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Related works assume external information

• Labeled data of the target

Finger reflection

Sensor under 
the target’s table• Keyboard size and layout

• Finger reflection
• Very close sensors (cm)
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A general attack: 
No external information

1. The target: types in English 
(10+ mins)

Target

Attacker

Threat Model
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1. The target: types in English 
(10+ mins)

2. The attacker: 1 RGB camera
• Unobstructive view of  hands 
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Design Intuition: Self-Supervised Learning

Video of  Target Typing

Step 1: Self-annotating Some 
Video Frames

Fingertip Positions
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15 13.6 35.5 59.0

16 22.8 62.7 14.8
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Evaluation (Across Users)

• 3 metrics (original vs. recovered text)
• CER: character error rate (%) ⬇
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Avg: 
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12m

Attack in the Wild

Telephoto lens 
(< $60)

Semantic similarity: 87.2%
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No Visual Cue
Equally successful w/ and w/o keyboard
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Project website: 

Defense 
A physical shield
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https://sandlab.cs.uchicago.edu/keystroke/


